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1 Introduction
Overview This document describes the above listed deliverable: Combined mapping
with Adaptive Feet and external sensing.

The primary research output is a localization algorithm which can use tactile
information such as geometry and terrain properties to localize within a prior map.
The sensorized passive foot from D2.3 were used to perform the terrain classification.
The attached paper has been accepted for publication in the journal Autonomous
Robots in a special issue called Power-On-and-Go Autonomy: Right, Out of the Box.
The publication also includes a video demonstrating capabilities on the ANYmal robot.

Relation to overall THING project This particular deliverable describes how the
work of Poznań University of Technology (PUT) on haptic classification (which was
primarily carried out in Task 3.1) and the work on navigation using touch of University
of Oxford (UOXF, done as part of Task T3.2) were integrated.

This fusion meant that both geometric cues as well as the contact properties of
footsteps were fused to demonstrate meaningful navigation tasks — both localisation
and mapping using only feet.

The initial work of PUT in Task 3.1 required artifical scratching motions to collect
sufficient observations to make a classification. By using improved classification
approaches, in particular convolutional neural networks, better performance was
achieved which allowed the probing technique to be replaced by typical forward
locomotion steps (with a quasistatic gait). The major result was that the material type
(from 10 types including brick method, stone, carpet and grass) could be determined
clearly.

In parallel in Task 3.2 Oxford’s method for haptic localisation was developed to use
the geometric of the walking surface to determine where the robot was located. With
a particle filter, the state and uncertainty of the robot’s position could be maintained
over time and natural uncertainties could be captured — such as walking on a flat
surface being ambigious while touching edges or having the particle set only move in
the uncertain dimensions and not in pitch/roll or height.

In this task (Task 3.3) and the related deliverable, we fused these methods and
as the results show, terrain courses with both 3D geomtery and different material
properties could be used for navigational purposes.

Furthermore, we showed that the adaptive feet developed by parts in ETH and
UNIPI could be used to provide similar information as the traditional point feet which
meant that the robust walking control algorithms of our controls partners could also
be used with our algorithms.

The eventual use of this work would be to enable a blind walking robot to slowly
probe its way around a facility by making contact with surfaces and in doing so make
its way to a location of interest or to escape to a base station — in particular within
the operation situation of a very dusty mine.
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Abstract Legged robot navigation in extreme environments
can hinder the use of cameras and lidar due to darkness,
air obfuscation or sensor damage, whereas proprioceptive
sensing will continue to work reliably. In this paper, we pro-
pose a purely proprioceptive localization algorithm which
fuses information from both geometry and terrain type to
localize a legged robot within a prior map. First, a terrain
classifier computes the probability that a foot has stepped
on a particular terrain class from sensed foot forces. Then,
a Monte Carlo-based estimator fuses this terrain probability
with the geometric information of the foot contact points.
Results demonstrate this approach operating online and on-
board an ANYmal B300 quadruped robot traversing several
terrain courses with different geometries and terrain types
over more than 1.2 km. The method keeps pose estimation
error below 20 cm using a prior map with trained network
and using sensing only from the feet, leg joints and IMU.

Keywords Legged Robots · Proprioceptive Localization ·
Terrain Classification · Tactile Sensing

1 Introduction

Recent advances in the maturity and robustness of quadru-
pedal robots have made them appealing for dull and dirty
industrial operations, such as routine inspection and moni-
toring. Automating these operations in underground mines
and sewers is particularly challenging due to darkness, in-air
dust, dirt, and water vapor, which can significantly impair a
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Fig. 1 An ANYmal robot (Hutter et al. (2016)) in a sewer with two
feet in a slippery, wet depression and two feet in a dry, elevated area.
With prior information about terrain type and geometry, it is possible
for the robot to localized in the world using only touch. This would
be extremely useful in dark and foggy environment (Image courtesy of
RSL/ETH and from Kolvenbach et al. (2020)).

robot’s vision system (Kolvenbach et al. (2020)). Addition-
ally, camera or laser sensor failure may leave only proprio-
ceptive sensors (i.e., IMU and joint encoders) at the robot’s
disposal.

Blind quadrupedal locomotion has achieved impressive
levels of reactive robustness without requiring vision sensors
(Focchi et al. (2020); Lee et al. (2020)). However, without
the ability to also localize proprioceptively, a robot would
still be incapable of completing missions or inspections.

1.1 Contributions

In this paper, we significantly extend our prior work on pro-
prioceptive localization (Buchanan et al. (2020)) with the
following contributions:

– A novel proprioceptive legged robot localization system
that, in contrast to (Buchanan et al. (2020)), fuses both
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terrain geometry and semantic information. To the best of
our knowledge, this is the first localization system using
semantics when completely blind.

– A terrain classification method employing signal mask-
ing in the 1D convolutional modules, making it possible
to process variable length signals from footsteps with-
out the need to truncate or pad them. This enables our
method to work on uneven terrain and at differing walk-
ing speeds, unlike in (Bednarek et al. (2019b)).

– Extensive additional testing on an ANYmal B300 quad-
ruped robot (Hutter et al. (2016)) including different ge-
ometries and terrain types, for a total duration of 2.5 h and
more than 1.2 km of traveled distance. The pose estima-
tion error is kept down to 10 cm on geometrically feature
rich terrain and on average below 20 cm on all terrain
while exploiting terrain semantics. We also demonstrate
convergence after only five steps from an unknown initial
pose.

The remainder of this document is structured as follows:
Section 2 summarizes relevant research in the fields of ter-
rain classification, in-hand tactile localization and legged
haptic localization; Section 3 defines the mathematical back-
ground of the legged haptic localization problem; Section 4
describes our proposed haptic localization algorithm; Sec-
tion 5 describes the implementation details to deploy our
algorithm on a quadruped platform; Section 6 presents the
experimental results collected using the ANYmal robot; Sec-
tion 7 provides an interpretation of the results and discusses
the limitations of the approach; finally, Section 8 concludes
with final remarks.

2 Related Works

Pioneering work which exploits a robot’s legs, not just for
locomotion, but also to infer terrain information such as fric-
tion, stiffness and geometry has been presented by Krotkov
(1990). This idea has recently been revisited to perform ter-
rain vibration analysis or improve locomotion parameter se-
lection via terrain classification. Since we are interested in
using terrain classification for localization, we cover themost
relevant works applied to legged robots in Section 2.1.Works
on proprioceptive localization in manipulation and legged
robots are described in Sections 2.2 and 2.3, respectively.

2.1 Tactile Terrain Classification

The first tactile terrain classification method for walking
robots was presented by Hoepflinger et al. (2010) and con-
cerned experiments with a single leg detached from a robot’s
body. In this work, force measurements and motor currents
were used to successfully distinguish between four terrain

types. These results paved the way for the application of
terrain classification methods on complete legged robots.

More recently, Kolvenbach et al. (2019) used a single
leg on a real, standing ANYmal robot to differentiate be-
tween four different types of soil. Two types of feet (point
and planar) were used to collect force, torque and IMU mea-
surements that were processed by an SVM classifier. The
system showed that the tactile information could be used to
differentiate between visually similar soils. However, their
method required a pre-determined probing action which is
impractical as it forces the robot to stop walking.

A terrain classification system that could operate during
locomotion was presented by Wellhausen et al. (2019). At
start, their legged robot was trained to assign a terrain nego-
tiation cost based on force/torque sensors. Once operating,
their system assigned a terrain negotiation cost from images
based on previous feet-to-image correspondences and terrain
classification based on proprioceptive sensors. The ability to
predict the terrain negotiation based on images was then used
to plan the robot’s motion and avoid high cost terrains.

In complete darkness, which is our intended domain,
vision-based sensors are of limited use for terrain classifi-
cation, so we focus on purely proprioceptive sensing. In our
previous work (Bednarek et al. (2019a)), we showed how
deep learning models can be used to increase the terrain
classification accuracy. The system showed 98% classifica-
tion accuracy from force-torque measurements against six
terrain classes during a statically stable walk. However, this
approach was limited to fixed-length input signals and thus
could not generalize to aperiodic gaits, different speeds, or
uneven terrain. In our work, we overcome these limitations
with a novel masking mechanism in the convolutional layer,
which allows us to process variable length signals.

More recently, Lee et al. (2020) showed an end-to-end
approach to terrain classification for locomotion. Their deep
learning controller was based on proprioceptive signals to
adapt the gait to rough terrains. Even though tactile terrain
classification was not explicitly performed, an internal rep-
resentation of the terrain type was implicitly stored inside
the network’s memory. In our work, we opt for a modular
approach that explicitly returns a terrain class, which can
then be used by the localization estimator.

2.2 Tactile Localization in Manipulation

Tactile localization involves the estimation of the 6-Degree
of Freedom (DoF) pose of an object (of known shape) in
the robot’s base frame by means of kinematics of the robot’s
fingers and its tactile sensors. Since the object can have any
shape, the probability distribution of its pose given tactile
measurements can be multimodal. For this reason, tactile
localization has typically been addressed using Sequential
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Monte Carlo (SMC) methods, a subfamily of which are
called particle filters (Fox et al. (2001)). SMC methods are
sensitive to the dimension of the state space, which should
be low enough to avoid combinatorial explosions or parti-
cle depletion. State-of-the-art methods aim to reduce this
dimensionality and also to sample the state space in an effi-
cient manner. For example, Koval et al. (2016) reduced the
state space of the pose of an in-hand object to the observable
contact manifold.

Chalon et al. (2013) proposed a particle filtering method
for online in-hand object localization that tracks the pose of
an object while it is being manipulated by a fixed base arm.
The estimated pose was subsequently used to improve the
performance of pick and place tasks. The particle weights
were updated by penalizing finger/object co-penetration and
the distance between the object and the fingertip in contact.

Manuelli and Tedrake (2016) approached a slightly dif-
ferent problem, using a particle filter to estimate external
contacts on a rigid body robot using only force/torque sen-
sors in the joints of the robot. Particles were distributed
around the robot’s body and particle weights were computed
from howwell the contact point explained an external torque.

Vezzani et al. (2017) proposed an algorithm for tactile
localization using the Unscented Particle Filter (UPF) on a
iCub robot with sensorized fingertips to localize four dif-
ferent objects in the robot’s reference frame. The algorithm
was recursive and could process data in real-time. The object
and the robot’s base were assumed to be static, allowing the
pose to be estimated as a fixed parameter. For legged haptic
localization, the assumption of both a static robot and terrain
does not always hold and more general methods are required.

2.3 Haptic Localization of Legged Robots

The first example of haptic localization applied to legged
robots is from Chitta et al. (2007). In their work, they pre-
sented a proprioceptive localization algorithm based on a
particle filter for LittleDog, a small electric quadruped. The
robot was commanded to perform a statically stable gait over
a known irregular terrain course, using a motion capture
system to feed the controller. While walking, the algorithm
approximated the probability distribution of the base state
with a set of particles. The state included three DoF: linear
position on the GH-plane and yaw. Each particle was sampled
from the uncertainty of the odometry, while the weight of a
particle was determined by the L2 norm of the height error
between the map and the feet contact location. The algorithm
was run offline on eight logged trials of 50 s each.

Schwendner et al. (2014) demonstrated haptic localiza-
tion on a wheeled robot with protruding spikes. The spikes
detected contacts with the ground, which were compared to a
prior 2.5D elevation map. Each wheel enabled multiple con-
tact measurements, which they used to perform plane fitting

against the prior map and improve localization over larger,
flatter terrain. They also performed terrain classification, but
with a camera, which we do not require in our proposed
work. They demonstrated an average position error 39 cm in
five experiments, of approximately 100m each.

In Buchanan et al. (2020), we presented an SMCmethod
that estimated the past trajectory (instead of the latest pose)
at every step. Furthermore, the localization was performed
for the full 6-DoF of the robot, instead of just the G, H and
yaw dimensions as in Chitta et al. (2007) and Schwendner
et al. (2014). The localization system was experimentally
demonstrated online and onboard anANYmal robot and used
in a closed loop navigation system. When walking on flat
areas, the localization uncertainty increased due to the lack
of constraints on the GH-plane. We are therefore motivated to
use terrain classification techniques described in Section 2.1
to incorporate more information into the SMC.

3 Problem Statement

Let x: ∈ (� (3) be a robot’s pose at time : . We use the
notation x̃ to represent a pose estimate from an external
estimator, and x∗ to represent its most likely estimate from
our SMC filter.

3.1 Quadruped State Definition

We assume that for each timestep : , an estimate of the robot
pose x̃: and its covariance Σ: ∈ R6×6 are available from an
inertial-legged odometric estimator, such as Bloesch et al.
(2018); Fink and Semini (2020); Hartley et al. (2020). The
uncertainties for the rotation manifold are maintained in the
Lie tangent space, as in Forster et al. (2017). We also assume
that the location of the robot’s end effectors in the base
frameD: = (dLF, dRF, dLH , dRH) ∈ R3×4 are known from
forward kinematics. The forces acting on each foot F: =
(fLF, fRF, fLH, fRH) ∈ R3×4 are measured by foot sensors
(when available) or inferred from inverse dynamics. Finally,
the binary contact statesK: = (^LF, ^RF, ^LH, ^RH) ∈ B4 are
inferred from F: .

For simplicity, we assume errors due to joint encoder
noise or limb flexibility to be negligible. Therefore, the prop-
agation of the uncertainty from the base to the end effec-
tors is straightforward to compute. For brevity, the union
of the aforementioned states (pose, contacts, and forces)
at time : will be referred as the quadruped state Q: =
{x̃: ,Σ: ,D: , K: , F: }.

3.2 Prior Map

Our approach can localize against 2.5D terrain elevation
maps as well as full 3D maps. Terrain classification is meant
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Fig. 2 Terrain map used in Experiment 3, showing terrain categories.

to be carried outwhile the robot is walking, with no dedicated
probing actions, therefore 2.5D maps are augmented with a
terrain class category for each cell. This enables our method
to overcome the degeneracy caused by featureless geome-
tries (e.g., flat grounds, which are uninformative about the
robot position on the GH-plane). Point clouds are used for 3D
maps and only contain geometric information. To distinguish
between the three types of map, we will refer to M when
2.5D only, M3 when 3D, and M2 when 2.5D augmented
with class information, respectively. An example of anM2

map colorized by terrain class is shown in Figure 2.

3.3 Estimation Objective

Our goal is to use a sequence of quadruped states to estimate
the most likely sequence of robot poses up to time ::

X∗: = [x∗0, x∗1, . . . , x∗: ] (1)

such that the likelihood of the contact points to be on the
map is maximized. Additionally, we assume x∗0 is known.

4 Proposed Method

To perform localization, we sample a predefined number of
particles at regular intervals from the pose distribution pro-
vided by the odometry (as described in Section 4.2) and we
compute the likelihoods of the measurements by comparing
each particle to the prior map, so as to update the weights of
the particle estimator (see Section 4.3). For convenience, we
give a brief summary of SMC theory in Section 4.1.

4.1 Sequential Monte Carlo Localization

In SMC Localization, the objective is to approximate the
posterior distribution of the state x: given a history of mea-
surements z0, . . . , z: = z0:: as follows:

? (x: |z0:: ) =
∑
8

F8
:−1? (z: |x: ) ?

(
x: |x8:−1

)
(2)

whereF8 is the importanceweight of the 8-th particle; ? (z: |x: )
is the measurement likelihood function and ?

(
x: |x8:−1

)
is

the motion model for the 8-th particle state. Since ? (x: |z0:: )
is typically unknown, the state x: is typically sampled from
?

(
x: |x8:−1

)
, yielding:

? (x: |z0:: ) =
∑
8

F8
:−1?

(
z: |x8:−1

)
X
(
x: − x8:

)
(3)

where X(·) is the Dirac delta function. Over repeated sam-
pling steps, the particles will spread out of the whole state
space with weights approaching zero. To avoid this “impov-
erishment" of the particles, an additional re-sampling from
the mostly likely state is used. When the re-sampling is done
at every step, the method is known as particle filtering. We
use a different strategy that merges likelihoods from a history
of states and so refer to our method with the more general
term SMC.

4.2 Locomotion Control and Sampling Strategy

Without a very robust reactive controller, blind locomotion
requires conservative footstep placement, hence we opt for a
statically stable gait, which guarantees stability at all times
even when the motion is stopped mid flight phase. Since
only one leg can be moved at the time, as soon as the swing
leg touches the ground the robot enters into a four-support
phase; at this time, the quadruped state estimate Q: and
the estimated terrain class 2̃ for a given foot position are
collected. Then, a new set of particles is sampled in a manner
similar to Chitta et al. (2007):

?(x: |x8:−1) = N(x: ,Δx̃:x8:−1,Σ: ) (4)

where Δx̃: = x̃−1:−1x̃: is the pose increment measured by the
onboard state estimator at times : − 1 and : .

At time : , the new particles x8: are thus sampled from a
normal distribution centered at the pose estimated from the
odometry with its corresponding covariance. Since roll and
pitch angles are observable from inertial-legged estimators,
their estimates have low uncertainty. In practice, this allows
us to reduce the number of necessary particles along these
two dimensions, while still retaining the ability to compen-
sate for the errors of the state estimator due to IMU biases,
which are observable by exteroceptive sensors only.

4.3 Measurement Likelihood Model for 2.5D Data

Themeasurement likelihood ismodeled as a univariateGaus-
sian centered at the local elevation of each cell, as done in
Buchanan et al. (2020). The variance fI was manually set
to 1 cm. Given a particle state x8: , the estimated position of
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Fig. 3 Comparison between contact measurements for 2.5D (left), 3D
(middle) and terrain class (right) map representations. The red dots
indicate the contact point as sensed by the robot, while the green dots
indicate the corresponding location returned by the map. The red line
shows the magnitude of the measurement. In the terrain classification
case, the view is from a top down perspective. The robot’s foot sensed
a contact in the 22 region but a classification of 21 was detected. The
nearest 21 point was returned by the map.

a contact in world coordinates for an individual foot 5 is de-
fined as the concatenation of the estimated robot base pose
and the location of the end effector, in base coordinates:

d8
5 = (38G 5 , 38H 5 , 38I 5 , ) = x8:d 5 (5)

Thus, the measurements and their relative likelihood func-
tions for the 8-th particle and a specific foot 5 are (Figure 3,
left):

I: = 3
8
I 5 −M(38G 5 , 38H 5 ) (6)

?(I: |x8: ) = N(I: , 0, fI) (7)

where: 38I 5 is the vertical component of the estimated contact
point location in world coordinates of foot 5 , according to
the 8-th particle; M(38G, 5 , 38H, 5 ) is the corresponding map
elevation at the GH coordinates of d8

5 .

4.4 Measurement Likelihood Model for 3D Data

Our method can incorporate contact events from 3D prob-
ing. This is useful for areas where the floor does not provide
enough information to localize. In this case, the robot can
probe walls and 3D objects with its feet. To better model this
situation, we represent the prior mapM3 ∈ R3×# by a 3D
point cloud with # points. The likelihood of a particular con-
tact point is computed using the Euclidean distance between
the foot and the nearest point in the map. This likelihood
is again modeled as a zero-mean Gaussian evaluated at the
Euclidean distance between the estimated contact point d8

5
and its nearest neighbor on the map, with variance fI :

I: = ‖d8
5 − np(M3, d8

5 )‖ (8)

?(I: |x8: ) = N(I: , 0, fI) (9)

where np(M3, d8
5 ) is the function that returns the nearest

point of d8
5 on the map M3, computed from its k-d tree

(Figure 3, middle). In our tests, point clouds were sufficiently
small to make the k-d tree search time negligible. For larger
scale environments, more compact representations based on
Truncated Sign Distance Fields (Oleynikova et al. (2017)) or
Octrees (Vespa et al. (2018)) could be used to allow for faster
search and less memory usage.

4.5 Terrain classification

Let 5 : S ↦→ C be the haptic terrain classification func-
tion that associates an element from the signal domain S
to an integer from the class counter-domain C. The set
S : {B ∈ R; (B)×6} includes sequences of variable length
force and torque signals B (of length ; (B)) generated by a foot
touchdown event. The set C is defined as the integers from 0
to = − 1, where = is the total number of terrain classes that
the robot is expected to be walking on (in our case, = = 8).
The terrain classes were chosen to have a different haptic
response, ensuring the existence of the function 5 .

Given the problem definition above, we introduce the
following:

– a classification method 5 ′ : S ↦→ C, which approximates
the function 5 . As an implementation of 5 ′ we used a
neural network;

– a dataset consisting of a list of pairs 3 : [(B, 2)], where
B ∈ S, 2 ∈ C. Such a dataset was divided into two
subsets, training and validation, with a ratio of 80 : 20;

– a training process formulated as an approximation of the
function 5 using the function 5 ′ by the minimization
of cross-entropy between the probability distributions
generated by these functions.

4.6 Terrain Class Measurement Likelihood Model

The prior map is represented as a 2-dimensional grid whose
cells are associated with a terrain class (an example is pro-
vided by Figure 2). Measurements are represented as a piece-
wise cost function. If the estimated terrain class 2̃ for a given
foot position d8

5 does match the class 2, at that location in the
prior map 2 = M2 (38G 5 , 38H 5 ) the probability is a constant
value corresponding to the maximum value of a zero-mean
univariate Gaussian with manually selected variance f2 of
5 cm (which is the width of the foot).

If the estimated class does not match the expected class in
the map, the same Gaussian distribution is used to model the
likelihood, where the input I2: is the distance to the closest
point in the map with the expected class. This function is
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Fig. 4 Information flow diagram of the overall system.

shown as

?(I: |x8: ) =
{

1
f2

√
2c

2̃ = 2

N(I: , 0, f) 2̃ ≠ 2,
(10)

where

I2: = ‖d8
GH 5 − npc(M2 , d8

GH 5 , 2̃)‖2. (11)

The function npc(M2 , d8
GH 5 , 2̃) returns the nearest 2D point

with class 2̃ to the 2D foot position d8
GH 5 in the map M2 .

This last case is shown in Figure 3, right.
We assume elevation and terrain class measurements

(I: , I2: ) are conditionally independent. Therefore, their joint
probability can be computed as

?(I: , I2: |x8: ) = ?(I: |x8: )?(I2: |x8: ). (12)

5 Implementation

The block diagramof our system is shown in Figure 4. The in-
ternal estimator on the ANYmal robot, TSIF (Bloesch et al.
(2018)), provides the odometry for the particle estimator,
while the neural network estimates the class. This informa-
tion is compared against the prior map to provide an estimate
of the robot’s trajectory, X∗: .

Pseudocode for the particle estimator (green block in
Figure 4) is listed in Algorithm 1. At time : , the estimates
of the terrain class 2̃ and the robot pose x̃: are collected.
The pose estimate is used to compute the relative motion
Δx̃:−1:: , propagate forward the state of each particle x8: , and
draw a sample from the distribution centered in Δx̃:x8:−1
with covariance Σ: = (fG,: , fH,: , fI,: ).

Theweight of a particleF8 is then updated bymultiplying
it by the likelihood that each foot is in contact with the map
and the terrain class. In our implementation, we modify the
likelihood functions from Equation 7 as:

?(I: |x8: ) = min(d,N(I: , 0, fI)) (13)

where d is a minimum weight threshold, so that outlier con-
tact measurements do not immediately lead to degeneracy.

Re-sampling is triggeredwhen the variance of theweights
rises above a certain threshold. This is necessary to avoid dis-
persion of the particle set across the state space, with many
particles with low weight. By triggering this process when
the variance of the weights increases, the particles can first
track the dominant modes of the underlying distribution.

x8
0 ∼ N(x0, x̃0, Σ0) ∀8 ∈ #

foreach four-support phase : do
Δx̃: ← x̃−1:−1 x̃:

foreach particle 8 ∈ # do
x8
: ∼ N(x: , Δx̃:x

8
:−1, Σ: )

F 8
: ← F 8

:−1
foreach foot 5 do

if 3D then
I: ← ‖np(M3, d8

5 ) − d8
5 ‖

F 8
: ← F 8

: ? (I: |x8
: )

else
I: ← 38

I 5 − M(38
G 5 , 3

8
H 5 )

I2: ← ‖d8
GH 5 − npc(M2 , d8

GH 5 , 2̃) ‖
F 8

: ← F 8
: ? (I: , I2: |x8

: )
end

end
G∗: ←WeightedMean(G0: . . . G#

: , F0: , . . . F
#
: )

X∗: ← [x
9
0 , . . . , x

9
: ]

if Var(F 8
: ) > threshold then

resample(G8: )
end

end
end

Algorithm 1: Haptic Sequential Monte Carlo Localiza-
tion

5.1 Particle Statistics

The pose estimate for the :-th iteration, x∗: , is computed
from the weighted mean of all the particle poses. However,
as we showed in our previous work, the particle distribution
is often multi-modal. This motivated us to selectively update
different dimensions of the robot pose. If the variance of
the particle positions in the G and H axes are low (i.e., �
fG,: , fH,: ), we assume a well defined estimate and update
the robot’s full pose. However, if they are high, we update
only the I component of the robot’s location, which is always
low as the robot keeps contact with the ground.

In practice, with the terrain classification we found the
terrain course was sufficiently detailed to keep particle po-
sition variance in the GH-plane low, therefore I-only updates
were rare. The threshold we used was a standard deviation of
10 cm, which corresponds to the typical uncertainty in our
experiments.

To avoid particle degeneracy, importance sampling can
be done in areas with higher likelihood. For example, if a
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Fig. 5 Neural Network Structure used for Terrain Classification. The
main blocks of neural architecture are convolutional (conv), recursive
(GRU bidir), and fully connected (FC) blocks. The masking mecha-
nism used in variable-length signal processing blocks takes appropriate
masks, marked in green, orange, and red. These masks correspond to
the individual signal lengths, taking into account the initial length and
the reduction of size by convolution with stride equal to 2.

grass terrain is detected, some particles could be injected in
every grass terrain in the map. Further investigation on the
benefits of importance sampling are left for future work.

5.2 Terrain Classifier Network

Ou neural network architecture is shown in Figure 5 and
consists of three components: convolutional, recurrent, and
predictive. Both the convolutional and recurrent components
must process variable-length data. Therefore, for the con-
volution part, masking of the signal is required to prevent
padded values from affecting the forward-pass result.

The first component of our network consists of two resid-
ual layers (ResLay). The ResLay used in our work is an adap-
tation of the one by He et al. (2016) with 2D convolutions
replaced by 1D and support for masking. The recurrent com-
ponent uses two bidirectional layers (Bidir) with two Gated
Recurrent Units (GRU) (Cho et al. (2014)) in each. The out-
put of the recurrent component is an average of two resulting
hidden states of the last Bidir. The final output of the neu-
ral network is produced by the predictive component, which
takes the recurrent component’s output, and using two fully
connected (FC) layers produces a probability distribution
from which the terrain class is inferred.

The number of convolutional layers and their sizes were
chosen empirically to produce the best possible features be-
fore applying the compressed signal to the recursive part.
To ensure better error propagation for the convolution part,
we employed so-called skip-connections between layers thus
reducing dimensionality.

The consecutive layers of the model are presented in
Figure 5. Each convolution block executes the following op-
erations: batch normalization (Ioffe and Szegedy (2015)),

dropout (Srivastava et al. (2014)), and Exponential Linear
Unit (ELU) activation function (Clevert et al. (2016)). All
are modified to support masking. We used kernel size of
5 in each convolution layer. The output from each ResLay
block is two times smaller as a result of stride in convolutions
(marked as /2). Dropout is also used in every Bidir and FC
(which also use batch normalization).

The model uses a dropout rate of 0.3 and a batch nor-
malization momentum of 0.6. The proposed neural network
consists of 1, 374, 920 trainable parameters.

5.2.1 Training

The learning process was carried out using the k-fold cross-
validation methodology, with : = 5. The AdamW optimizer
from Loshchilov and Hutter (2019) was used to minimize
the loss function, with the following parameters:

– learning rate: 5e-4 with exponential decay,
– weight decay: 1e-4 with cosine decay.

Training was performed for 1000 epochs after which the
training continued until no progress was made for 100 con-
secutive epochs. The size of each mini-batch was 256.

6 Experimental Results

We extensively evaluated the performance of our algorithm
in three different experiments, each one targeting a different
type of localization. These are described in more detail in
Sections 6.2, 6.3, and 6.4.

6.1 Evaluation Protocol

There are three different modalities in our algorithm: HL-G
(Haptic Localization Geometric), which uses only geometric
information, HL-C (Haptic Localization Class), using only
class information, and HL-GC (Haptic Localization Geo-
metric and Class), which uses both geometric and terrain
class information. HL-G was tested in Experiments 1 and 2
using 2.5D and 3D prior maps, respectively. HL-G, HL-C
and HL-GC were tested in Experiment 3 with 2.5D maps
augmented with terrain class information.

6.1.1 Evaluation Metrics

Wequantitatively evaluated localization performance by com-
puting the the mean of the Absolute Translation Error (ATE)
as described by Sturm et al. (2012):

1
=

=∑
8=1
‖trans

(
T−18 T̂8

)
‖ (14)
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Mean Absolute Translation Error (ATE)

Trial Dist. [m] Time [s] TSIF [m] HL-G [m]
1 66.42 525 0.63 0.13

2 145.31 1097 2.57 0.40

3 55.67 557 0.52 0.19

4 68.71 604 0.65 0.32

5 172.65 1606 2.00 0.61

Table 1 Experiment 1: Estimation performance. TSIF = Two-State
Implicit Filter (Bloesch et al. (2018)); HL-G = Haptic Localization
with Geometry only.

where T8 and T̂8 are the robot’s ground truth and estimated
poses, respectively. In contrast to Sturm et al. (2012), we do
not perform the alignment of trajectories, as ground truth
and estimated poses are represented in the same coordinate
system.

A qualitative evaluation was also performed for Experi-
ment 1 and 2 by assessing the ability of the robot to reach its
planned goals or end effector targets while using the localiza-
tion online. This demonstrated the benefit of the localization
when used in the loop with the onboard motion planner.

6.1.2 Ground Truth and Prior Map

The ground truth trajectories were collected by motion cap-
ture systems at 100Hz. The pose of both the robot and the ter-
rain course reference frame were accurately measured with
mm accuracy via reflective markers installed on them.

At start of the experiment, the relative position of the
robot within the map was measured using ground truth and
used for initialization only. Thereafter, the pose of the robot
was estimated using the particle filter. To account for initial
errors, particles at the start were sampled from a Gaussian
centered at the initial robot pose with a covariance of 20 cm.

The prior maps were captured with survey grade laser
scanners (LeicaBLK-360 andSURPHASER100HSX)which
provided point clouds with sub-centimeter accuracy.

6.2 Experiment 1: 2.5D Terrain Course

In this experiment, the robot was commanded to navigate be-
tween four walking goals at the corners of a rectangle. One
of the edges required crossing a 4.2m terrain course com-
posed of a 12° ascending ramp, a 13 cm high chevron pattern,
an asymmetric composition of uneven square blocks and a
12° descending ramp (Figure 6). After crossing the wooden
course, the robot returned to the starting position across a
portion of flat ground, so as to test the system behavior in
feature-deprived conditions.

B

W

Fig. 6 Experiment 1: ANYmal haptic localization experiments. The
robot traverses the terrain, turns 90 deg right and comes back to the
initial position passing trough the flat area. The goals given to the
planner are marked by the dark red disks, while the planned route is
a dashed green line (one goal is out of the camera field of view). The
world frame W is fixed to the ground, while the base frame B is rigidly
attached to the robot’s chassis. The mutual pose between the robot and
the terrain course is bootstrapped with the motion capture.

Fig. 7 Experiment 1, Trial 2: Top view of the estimated trajectories
from TSIF (dashed purple), haptic localization (blue) and ground truth
(green).

While blind reactive locomotion has been developed by
a number of groups including Di Carlo et al. (2018) and
Focchi et al. (2020), unfortunately our blind controller was
not sufficiently reliable to cross this terrain course, so we
resorted to use of the statically stable gait from Fankhauser
et al. (2018) which used a depth camera to aid footstep plan-
ning. However, the pose estimation was performed without
access to any camera information.

To demonstrate repeatability, we performed five trials of
this experiment, for a total distance traveled of more than
0.5 km and 1 h13min duration. A summary of the results
is presented in Table 1, where HL-G shows an overall im-
provement between 50% to 85% in the ATE compared to the
onboard state estimator. ATE is 33 cm on average, which re-
duces to 10 cm when evaluating only the feature-rich portion
of the experiments (i.e., the terrain course traversal).
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For trials 1 and 2, the robot was manually operated to
traverse the terrain course, completing two and four loops,
respectively. In trials 3–5, the robot was commanded to fol-
low the rectangular path autonomously. In these trials, the
haptic localization algorithm was run online in closed-loop
and effectively guided the robot towards the goals (Figure
7). Using only the prior map and the contact events only, the
robot stayed localized in all the runs and successfully tracked
the planned goals. This can be seen in Figure 7, where the
estimated trajectory (in blue) diverges from ground truth on
the GH-plane when the robot is walking on the flat ground.
This is due to growing uncertainty from lack of geometric in-
formation, however the covariance reduces significantly and
the cluster mean re-aligns with the ground truth when the
robot reaches the terrain.

Figure 8 shows in detail the estimator performance for
each of the three linear dimensions and yaw. Since posi-
tion and yaw are unobservable, the drift on these states is
unbounded. In particular, the error on the odometry filter
(TSIF Bloesch et al. (2018), purple dashed line) is domi-
nated by upward drift (due to kinematics errors and impact
nonlinearities, see third plot) and yaw drift (due to IMU gyro
bias, see bottom plot). This drift is estimated and compen-
sated for by the haptic localization (blue solid line), allowing
accurate tracking of the ground truth (green solid line) in all
dimensions. This can be noted particularly at the four peaks
in the I-axis plot, where the estimated trajectory and ground
truth overlap. These times coincide with the robot is at the
top of the terrain course.

6.3 Experiment 2: Online Haptic Exploration on Vertical
Surfaces

The second experiment involved a haptic wall following task
with the robot starting in front of a wall but with an uncer-
tain location. The particles were again initialized with 20 cm
position covariance. To test the capability to recover from an
initial error, we applied a 10 cm offset in both G and H from
the robot’s true position in the map. At start, the robot was
commanded to walk 1m to the right (negative H direction)
and press a button on the wall, whose location in the prior
map was known. To accomplish the task, the robot needed to
“feel its way” by alternating probing motions with its right
front foot and walking laterally to localize inside the room.
The fixed number of probing motions was pre-scripted so
with each step to the right, the robot probed both in front and
to its right. The whole experiment was executed blindly with
the static controller from Fankhauser et al. (2018).

As shown in Figure 9 the robot was able to correct its lo-
calization and complete the task of touching the button. The
initial probe to the front reduced uncertainty in the robot’s
G and I directions, which reduces the particles to an ellip-
soidal elongated along H. As the robot moves, uncertainty

Fig. 8 Experiment 1, Trial 2: Comparison between the estimated po-
sition from TSIF (dashed purple) and haptic localization (blue) against
ground truth (green). After 200 s, the estimation error in TSIF has
drifted significantly upward and in yaw. In particular, the upward drift
is noticeable in the third plot, where the values grow linearly. The drift
is eliminated by the re-localization against the prior map.

in the G direction increases slightly. By touching the wall
on the right, the robot re-localized in all three dimensions
in much the same way as a human following a wall in the
dark would. The re-localization allows the robot to press the
button, demonstrating the generalization of our algorithm to
3D. This would enable a robot to localize by probing a known
piece of mining machinery, allowing it to perform mainte-
nance tasks. The final position error was: [7.7,−3.7,−0.2]
centimeters in the G, H and I directions.

6.4 Experiment 3: Terrain Classification

In the third experiment, we demonstrate the localization us-
ing terrain semantic information, which has been tested on
a custom designed terrain course. Multiple 1 × 1m2 tiles of
different terrain materials were placed on a 3.5 × 7m2 area.
The course includes a 20 cm high platform with two ramps
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Fig. 9 Experiment 2: Haptic probing experiment in 3-dimensions. The
top row shows the robot performing the experiment while the bottom
row shows the particle distribution of position estimates. The particle
set is colorized by normalized weight according to the jet colormap
(i.e., dark blue = lowest weight, dark red = highest weight). First, on
the bottom left, the robot has an initial distribution with poses equally
weighed. The robot makes a forward probe and then moves to the right.
Now the particles are distributed as an ellipse with high uncertainty to
the left and right of the robot. Then, the robot makes a probe to the
right and touches an obstacle; the particle cloud collapses into a tight
cluster. Since the robot is now localized, it is able to complete the task
of pressing the button on the wall.

with different terrain materials, as shown in Fig 10. The dif-
ferent terrain types used were: gum, carpet, PVC, foam, sand,
artificial grass, ceramic and gravel.

For training, we gathered an additional dataset of the
robot walking on the different patches consisting of 8773
steps with a quasi-static walk gait. Examples of data collec-
tion is shown in Figure 10 Top. During the data collection,
the maximum base displacement and rotation were enforced
to 0.21m and 0.23 rad, respectively. These limits ensured
a stable walk at all times. The dataset was split into 7018
training and 1775 testing samples. To minimize the impact
of unbalanced data on the learning process (e.g., more steps
on a specific class), the loss function was weighted based
on the number of steps taken on each terrain. The network
was trained as described in Section 5.2.1 and the mean and
standard deviation of the accuracy was estimated from k-fold
cross-validation to be 94% and 0.09, respectively.

The robot was equipped with sensorized feet which fea-
ture high quality 6-axis force/torque sensors (Valsecchi et al.
(2020)). These feet are necessary to provide the signals for
terrain classification as in Bednarek et al. (2019b). The robot
autonomously walked between pre-programmed waypoints
placed over the entire course, including several passes over
the ramp. Large sections of the trajectory were only on the
flat terrain tiles, forcing the algorithm to rely mostly on ter-
rain classification for localization. Unlike Experiment 1, the
robot was able to walk completely blind and no exterocep-
tion was used for footstep planning. A statically stable gait
was used such that one foot was in the air at a time.

Fig. 10 Top: Examples of foot positioning when collecting data on
different terrains under controlled laboratory conditions. Bottom: Ex-
periment 3: ANYmal with sensorized flat feet standing on the multiple
terrain type course. Close up of the foot is provided. An IMU and
fore/torque sensor is located in the sole with coordinate frame shown.

Mean Absolute Translation Error (ATE)
Trial Dist. Time TSIF HL-G HL-C HL-GC

[m] [s] [m] [m] [m] [m]
1 191 1114 0.64 0.23 0.63 0.14

2 331 1850 1.28 0.25 0.73 0.11

3 193 1090 0.72 0.21 0.61 0.18

Table 2 Experiment 3: HL-G = Haptic Localization with only geom-
etry; HL-C = Haptic Localization with only terrain class; HL-GC =
Haptic Localization with both geometry and terrain class.

To demonstrate repeatability, we have performed three
trials of this type, for a total distance traveled of more than
0.7 km and 1 h 7min duration. We compare results produced
using HL-G (Geometry), HL-C (Terrain Class) and HL-GC
(Geometry and Terrain Classification). As the majority of
the terrain course is flat, there is not enough information for
geometry only localization to be continuously accurate. Only
when using terrain class information as well as geometry can
the robot localize in all parts of the terrain course.

A summary of the experiments is presented in Table 2,
where HL-GC shows an overall improvement between 14%
to 56% in the ATE compared to HL-G. Using only the prior
knowledge of the terrain geometry and class, the robot stayed
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Fig. 11 Experiment 3, Trial 2: Top down view of the state estimator
(dashed purple), HL-GC estimated trajectory (red) and ground truth
(green). Trajectories are overlaid on terrain map with ramp shown in
a dashed box. Two dotted circles show notable areas in the trajectory.
A: At a boundary crossing, the particle mean diverges from the ground
truth. However, as the particle cloud nears the ramp, the geometric
information gives higher likelihood to the particles in the center of the
terrain.B:Another boundary crossing which in two separated crossings
triggers good localization updates.

localized in all the runs and bounded the linearly growing
drift of the state estimator. This can be seen in Figure 11,
where the estimated trajectory (in red) is able to stay near
the ground truth trajectory (green). In areas where there are
large patches of the same material, such as the gravel (dark
blue) and ceramic (yellow), there is not enough information
to localize in the GH-plane and the pose estimate drifts. When
the robot crosses the boundary into a new terrain type the
localization is able to correct.

Figure 13 shows in detail the estimator performance for
each of the three linear dimensions and yaw. As in Experi-
ment 1, the error on the odometry filter (TSIF, purple dashed
line) of the robot is dominated by upward and yaw drift. This
drift is estimated and compensated for by the haptic localiza-
tion (red solid line), allowing accurate tracking of the ground
truth (green solid line) in all dimensions1.

7 Discussion

The results presented in Sections 6.2 and 6.3 demonstrate that
terrainwith amoderate degree of geometric complexity (such
as Figure 6) already provides enough information to bound
the uncertainty of the robot’s location. The effectiveness of a
purely geometric approach is obviously limited by the actual
terrain morphology in a real world situation, which would
need to contain enough features such that all the DoF of the
robot are constrained once the robot has touched them.

1 A video showing all of these experiments is attached as supple-
mentary material

Fig. 12 Experiment 3, Trial 2: Here we show the difference in results
when using only geometric information HL-G (blue), only terrain class
information HL-C (yellow) and both HL-GC (red). We compare these
to the state estimator (dashed purple) and ground truth (green).

In the case where there is not enough geometric informa-
tion, we have shown in Section 6.4 that terrain semantics can
be used to localize. With sufficiently diverse terrain types (as
shown in Figure 10), boundary crossings from one terrain
to another provide enough information to correct for drift in
the GH-plane.

7.1 Analysis of Particle Distribution on Geometric Terrain

Figure 14 Top shows the evolution of the particles up to
the first half of the terrain course for Experiment 1, Trial
2. As the robot walks through, the particle cluster becomes
concentrated, indicating good convergence to the most likely
robot pose.

In the third subfigure, it can be noted how the proba-
bility distribution over the robot’s pose follows a bimodal
distribution, which is visible as two distinct clusters of par-
ticles. This situation justifies the use of particle filters, as
they are able to model non-Gaussian distributions which can
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Fig. 13 Experiment 3, Trial 2: Here we show the difference in results
when using only geometric information HL-G (blue), only terrain class
information HL-C (yellow) and both HL-GC (red). We compare these
to the state estimator (dashed purple) and ground truth (green).

arise from a particular terrain morphology. In this case, the
bimodal distribution is caused by the two identical gaps in
between the chevrons. In such situations, a weighted average
of the particle cluster would lead to a poor approximation of
the true pose distribution. Therefore, the particle evolution
illustrated in Section 5.1 is crucial to reject such an update.

Figure 14 Middle shows the particle distribution over
flat ground. While not transitioning between terrain types,
our method must rely on geometric information only and
therefore is constrained in z but not x and y. In these cases
we only update the drift estimate in the z direction which
keeps the particle distribution near the ground but spread
out.

7.2 Analysis of Particle Distribution on Terrain Class

Figure 12 shows data from Experiment 3, Trial 1. We com-
pare results from HL-G, HL-GC and HL-C. We can see that
even with only class information, this method is able to keep

Fig. 14 Evolution of particle distributions during experiments. Parti-
cles are colorized by normalized weight according to the jet colormap
(i.e., dark blue = lowest weight, dark red = highest weight). Top (Ex-
periment 1): The green line indicates the ground truth trajectory. A)At
start, all the particles have the same weight and are normally distributed
at the starting position. B) After a few steps on the ramp, the robot pose
is well estimated on G and I directions, but there is uncertainty on H. C)
When the robot approaches the chevron the particle set divides into two
clusters, indicating two strong hypotheses as to the robot pose.D)After
a few more steps on the chevron, the robot is fully localized and the
particles are tightly clustered. Middle (Experiment 3): As the robot
walks from left to right, the particle cloud makes two terrain class tran-
sitions. As the robot crosses the first transition, the cloud becomes more
narrow in the G direction as error along this axis is corrected. Bottom
(Experiment 3): Top-down perspective with the robot estimate initial-
ized in the middle of the map and the initial particle distribution spread
out over the whole map. Within 5 steps the particle distribution has
re-sampled over the correct green terrain patch. The green circles are
the classified footsteps.

pose estimation error bounded in the G-H plane (mean ATE
for the class only trajectory was 0.63m). In the third subplot
from the top, the class only trajectory drifts upward in a sim-
ilar way to TSIF in Figure 13. This is because of the absence
of any measurement in the I, hence our method relies on the
proprioceptive state estimator.

Further analysis of the effect of terrain class on local-
ization is shown in Figure 14 middle. Here, we show the
evolution of particles from HL-GC in Experiment 3, Trial 3.
The particles, which initially are normally distributed around
the starting position, quickly converge along the I axis as the
floor elevation information is used. Once the boundary tran-
sition from green to red occurs, the particles correct for drift
in the G direction.

Finally, in Figure 14 bottom we show the behavior of
HL-GC when the particles are initialized evenly across the
entire map. Within 5 footsteps the distribution has converged
to the green section in the bottom left. This is because there
are only two green terrains, and the bottom left is the only
one on flat ground.
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8 Conclusion

We have presented a haptic localization algorithm for quad-
rupedal robots based on Sequential Monte Carlo methods.
The algorithm can fuse geometric information (in 2.5D or
3D) as well as terrain semantics to localize against a prior
map. We have demonstrated that even using only geometric
information, walking over a non-degenerate terrain course
containing slopes and interested geometry can reduce local-
ization error to 10 cm. Our method also works if the robot
probes vertical surfaces, measuring its environment in full
3D. Finally, we have shown how in areas of even sparser geo-
metric information, terrain semantics can be used to augment
this geometry.

The proposed approach demonstrated an average of 20 cm
position error over all areas of a terrain course with different
terrain classes and geometries. The ability to localize purely
proprioceptively is valuable for repetitive autonomous tasks
in vision-denied conditions, such as inspections of sewage
systems. This method could also serve as a backup localiza-
tion system in case of sensor failure — enabling a robot to
complete its task and return to base.

8.1 Future Work

The main limitation to our method is the need for sufficiently
informative terrain. To mitigate this, we intend to incorpo-
rate other terrain properties such as slope or friction coeffi-
cient. Additionally, incorporating the network uncertainty as
a prior on the terrain classification measurement would im-
prove fusion with geometric information. Finally, we intend
to generalize to more dynamic gaits and remove the costly
dependency on sensorized feet.
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